
LLNL-JRNL-652974

Lattice Anharmonicity and Thermal
Conductivity from Compressive Sensing
of First-Principles Calculations

F. Zhou, W. Nielson, Y. Xia, V. Ozolins

April 10, 2014

Physical Review Letters



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



A compressive sensing approach to anharmonicity and lattice thermal conductivity

Fei Zhou(周非)
Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Weston Nielson, Yi Xia, and Vidvuds Ozoliņš
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A systematic information theory based approach to deriving ab initio Hamiltonians for lattice
dynamics of crystalline materials is proposed. Compressive sensing lattice dynamics (CSLD) allows
to include all anharmonic terms up to a certain order and within a certain maximum distance. The
relevant terms that are necessary to reproduce the interatomic forces calculated from the density-
functional theory are selected by minimizing the `1 norm of the scaled force constants. The accuracy
and efficiency of the method are demonstrated for rocksalt NaCl and Cu12Sb4S13, a recently proposed
earth-abundant thermoelectric based on the natural mineral tetrahedrite.
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To a large extent, thermal properties of crystalline
solids are determined by the vibrations of their con-
stituent atoms. Hence, accurate models of lattice dy-
namics are essential for fundamental understanding of
the structure, thermodynamics, phase stability and ther-
mal transport properties of solids. The seminal work
of Born and Huang [1] forms the theoretical basis of
our understanding of harmonic vibrations and their re-
lation to elastic properties. With the advent of efficient
density-functional theory (DFT) based methods for solv-
ing the Schrödinger’s equation, several ab initio methods
for studying harmonic phonon properties of solids have
been proposed, such as the frozen phonon approach [2, 3],
direct/small displacement method [4, 5] and the density-
functional perturbation theory (DFPT) [6]. Due to these
developments, DFT calculations of the harmonic phonon
dispersion curves and phonon mode Grüneisen parame-
ters have become routine.

A systematic approach to anharmonicity has been
more difficult to develop. Anharmonic effects are key
to explaining phenomena where finite phonon lifetimes
and phonon frequency shifts? due to phonon-phonon
interactions become important, such as in the study
of lattice thermal conductivity κL and structural phase
transitions. Two main theories developed to deal with
such effects are the perturbation theory (PT) [7] and
the self-consistent phonon (SCP) approximation [8]. For
weakly anharmonic systems, phonon-phonon interactions
and their effects on phonon frequencies and lifetimes can
be evaluated using first-order PT [9] and lattice ther-
mal conductivity κL can then be obtained by solving the
Boltzmann transport equation [10]. The computational
feasibility and physical accuracy of these methods are
well established [11–14]. Unfortunately, PT tends to
be computationally expensive for solids with large, com-
plex unit cells, and its ability to handle strong anhar-
monicity is limited, especially in the cases when the har-

monic phonon dispersion is already unstable. The first-
principles SCP method deals with strong anharmonicity
by constructing a thermally averaged effective harmonic
Hamiltonian [15, 16]. Recently, SCP has been extended
to calculate third-order anharmonicity in Si and FeSi [17].

Here, we introduce an efficient and general approach to
building lattice dynamical models that can treat strong
anharmonicity when the 3rd-order terms are insufficient
(such as in the presence of harmonically unstable phonon
modes) and handle compounds with large, complex unit
cells. Currently, there is a dearth of methods that can be
used for this purpose. The “2n + 1” theorem of DFPT
[18] gives the higher-order anharmonicity, but the re-
quired calculations are cumbersome and, to the best of
our knowledge, have not been implemented for the sec-
ond derivatives of wave functions, which are necessary
to obtain the 4th-order anharmonic terms. The method
proposed here can be implemented with any standard
DFT total energy method and is expected to find ap-
plications in the study of ferroelectrics, thermoelectrics,
and temperature induced structural phase transforma-
tions, including martensitic transformations.

We take an approach where the true lattice Hamilto-
nian is determined from the calculated DFT forces using
compressive sensing (CS), a technique recently developed
in the field of information science [19]. The starting point
of the proposed method, compressive sensing lattice dy-
namics (CSLD), is a Taylor expansion of the total energy
in terms of the atomic displacements,

V = V0 + Φaua +
1

2
Φabuaub +

1

3!
Φabcuaubuc + · · ·(1)

where ua ≡ ua,i is the displacement of atom a at a lat-
tice site Ra in the Cartesian direction i, the 2nd-order
expansion coefficients Φab ≡ Φij(ab) = ∂2V/∂ua∂ub de-
termine the phonon dispersion in the harmonic approxi-
mation, and Φabc ≡ Φijk(abc) = ∂3V/∂ua∂ub∂uc, etc.,
are third- and higher-order anharmonic force constant
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tensors (FCTs). The linear term with Φa is absent if the
ideal lattice sites represent mechanical equilibrium. The
Einstein summation convention over repeated indices is
used throughout the paper. Systematic calculation (or
fitting) of all the higher-order anharmonic terms is chal-
lenging not only due to combinatorial explosion in the
number of tensors Φ(a1 · · · an) with increasing order n
and maximum distance between the sites {a1, . . . , an},
but also due to stringent requirements on the numeri-
cal stability of the fitting procedure. Currently, fitting
of higher-order anharmonic terms has been done only
for relatively simple crystals and weak anharmonicity
[14, 17, 20].

Direct calculations of all possible terms in Eq. (1) is
not only impractical, but also unnecessary. Physical in-
tuition suggests that the largest anharmonic terms corre-
spond to neighboring atoms with direct chemical bonds
and hence are short-ranged, while long range interac-
tions vary slowly and can be accurately described using
harmonic FCTs. Once the harmonic Coulomb force
constants have been subtracted, the remaining interac-
tions are expected to be short-ranged, i.e., decay faster
than the 3rd power of the interatomic distance. Unfortu-
nately, it is not generally obvious where to truncate the
expansion (1), both with respect to distance and order.
The latter requires physical intuition, which can only be
gained on a case-by-case basis through time-consuming
cycles of model construction and cross-validation.

We have recently shown that a similar problem in alloy
theory, the cluster expansion (CE) method for configura-
tional energetics [22, 23], can be solved efficiently and ac-
curately using compressive sensing [24, 25]. CS has revo-
lutionized information science by providing a mathemat-
ically rigorous recipe for reconstructing S-sparse models
(i.e., models with S nonzero coefficients out of a large
pool of possibles, N , when S � N) from only O(S) num-
ber of data points [26–28]. Given training data, CS au-
tomatically picks out the relevant coefficients and deter-
mines their values in one shot. To see how this applies to
lattice dynamics, we write down the force-displacement
relationship for Eq. (1):

Fa = − ∂V
∂ua

= −Φa − Φabub −
1

2
Φabcubuc − . . . . (2)

The forces on the left hand side can be obtained from
first-principles calculations using any general-purpose
DFT code for a set of atomic configurations in a super-
cell , similar to the direct method for harmonic force con-
stants. This establishes a linear problem for the unknown
FCTs:

F = AΦ, (3)

where the so-called sensing matrix A is calculated from
atomic displacements according to Eq. (2). A is an
M × N matrix, where M is the number of calculated
Cartesian force components, and N is the total number

of the independent, symmetrically distinct FCT elements
[29]. In practice, the latter can far exceed M , which
makes the linear problem Eq. (3) underdetermined. A
reasonable approach would be to choose Φ so that it re-
produces the training data F to a given accuracy with
the smallest number of nonzero FCTs (often called the
`0 norm of the solution). Unfortunately, this is a compu-
tationally hard problem that cannot be solved in polyno-
mial time with respect to the problem size.

CS solves the underdetermined linear problem in
Eq. (3) by minimizing the `1 norm of the coefficients,
‖Φ‖1 ≡

∑
I |ΦI |, while requiring a certain level of ac-

curacy for reproducing the data. `1 norm serves as a
computationally feasible approximation to the `0 norm
and results in a tractable convex optimization problem.
Mathematically, the solution is found as

ΦCS = arg minΦ‖Φ‖1 +
µ

2
‖F−AΦ‖22, (4)

where the second term is the usual sum-of-squares `2
norm of the error in reproducing the training data (in
this case, DFT forces). The `1 term drives the model
towards solutions with a small number of nonzero FCT
elements, and the parameter µ is used to adjust the rel-
ative weights of the `1 and `2 terms. Higher values of µ
will produce a least-square like fitting at the expense of
denser FCTs that are prone to over-fitting, while small
µ will produce very sparse under-fitted FCTs, simultane-
ously degrading the quality of the fit. The main advan-
tage of CLSD over other methods for model building is
that it does not require prior physical intuition to pick
out potentially relevant FCTs and the fitting procedure
is very robust with respect to noise, both random numer-
ical noise in the DFT forces and systematic noise due to
physical interactions that have been left out of the chosen
model.

Full account of the technical details of our approach
will be given in a separate publication, and here we only
describe the key features of our method. The optimal
value of µ that produces a model with the highest predic-
tive accuracy lies between the aforementioned extremes
and can be determined by monitoring the predictive error
for a leave-out subset of the training data which is not
used in Eq. (4) [24]. The predictive accuracy of the re-
sulting model is then validated on a third, distinct set of
DFT data, which we refer to as the “prediction set”. The
problem is scaled by Φ→ Φun−10 and u→ u/u0, where n
is the order of the FCT and u0 is a “maximum” displace-
ment chosen to be on the order of the amplitude of ther-
mal vibrations; this guarantees that all the terms in the
`1 norm have the same unit of force, and helps improve
the mutual coherence of the sensing matrix A [30]. Space
group symmetry and translational invariance conditions
are used to reduce the number of independent FCT ele-
ments [29]; the latter are also important for momentum
conservation according to the Noether’s theorem. These
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linear constraints are applied algebraically by construct-
ing a null-space matrix. Since the Taylor expansion em-
ploys non-orthogonal and unnormalized basis functions
un, it is challenging to construct training configurations
that would ideally satisfy the so-called incoherence re-
quirement for the sensing matrix A [19]. As a result, we
require a a relatively large training set compared to those
used for the orthogonal basis in CS cluster expansion [24].
However, this is not a serious practical limitation because
a large number of independent forces (3m−3) can be ex-
tracted from each m-atom supercell configuration. Note
that optimal compressive sensing favors configurations
with random atomic displacement, while the physically
accessible configurations follow thermodynamic distribu-
tions. In practice molecular dynamics (MD) trajectories
(at temperatures of interest) each with random displace-
ment (∼ 0.2 Å) added to every atom were found sufficient
for CSLD.

To demonstrate the efficiency and accuracy of CSLD,
we use it to study anharmonic phonon dynamics and
thermal conductivity in Cu12Sb4S13, a compound related
to an earth-abundant natural mineral tetrahedrite, which
has been recently shown to be a high-performance ther-
moelectric [31, 32]. Experiment found very low lattice
thermal conductivity of <∼ 1 W/mK in the undoped sam-
ple, and our previous calculation showed the presence of
unstable phonon modes [31], both point to strong an-
harmonicity. The body-centered cubic (bcc) Cu12Sb4S13

(space group I 4̄3m) has 29 atoms in the primitive cell,
a fairly large number that complicates computation of
FCTs. For example, there are 188 distinct atomic pairs
within a radius of a = 10.4 Å, 116 triplets within a/2, and
so on. Taking into account the 3n elements of each ten-
sor, the number of coefficients N explodes quickly (55584
in our setting). After symmetrization, N = 3188 still
represents a formidable numerical challenge.

DFT calculations were performed using the Perdew-
Becke-Ernzerhof (PBE) functional [33], PAW potentials
[34], a cutoff energy of 600 eV, and no symmetry con-
straints as implemented in the VASP code [35]. The
training set consists of a) two 2a × 2a × 2a bcc super-
cell structures with the 3 × 3 × 3 k-point grid and all
atoms randomly displaced by up to 0.2 Å, and b) 70 ab
initio MD trajectory snapshots with a bcc supercell and
a 6× 6× 6 k-point grid, taken at 3 ps intervals, at each
of T = 100, 200, · · · , 700 K.

Due to the considerable memory footprint of treating
the M×N matrix A, the CSLD model optimization went
through two stages. First, about N = 3× 104 (∼ 5× 105

before symmetrization) FCT elements up to 6th order
were fitted with CS (eq. 4). Those tensors with all zero
or near-zero elements as predicted by compressive sensing
were filtered out. The remaining 443 tensors are overall
physically meaningful, including 1) pair interactions, 2)
bond bending, e.g. S-Cu-S, and 3) high order derivatives,
e.g. ∂4V/∂u4x. Next, the final candidates of N = 3192

elements, including 4, 1382, 389, 787, 224, 406 at the 1st–
6th order, respectively, are fitted again. The optimized
fitting parameters are µ = 27 Å/eV and u0 = 0.6 Å.

Fig. 1 shows the overall accuracy in the obtained CSLD
model over a 2× 2× 2 bcc structure not included in the
fitting. Here all atoms are randomly displaced by 0.3
Å. The root-mean-square (rms) error of the force com-
ponents compared to DFT values is 0.08 eV/Åand the
relative error is 3%.

Fig. 2 clearly demonstrates the strong anharmonicity
of Cu12Sb4S13. The phonon dispersion (fig. 2a) according
to pair force constants extracted by CSLD features un-
stable modes and is in good agreement with our previous
calculation with LDA linear response [31], confirming the
validity of CSLD at the harmonic level. Out of 1382 pair
coefficients considered, CSLD picks out a sparse solution
of 154 non-zero ones. Fig. 2b shows the DFT potential
energy surface (points) along an unstable Γ point mode
of predominant Cu(2) displacement out of the plane of
three Cu(2)-S bonds (inset). The double-well behavior
of this potential energy surface points to strong anhar-
monicity and high-order FCTs. Our CSLD model (lines)
is able to reproduced the potential energy within 2 meV.

To test the applicability of this method in calculat-
ing lattice thermal conductivity, simulations were per-
formed on the well-studied NaCl in addition to tetra-
hedrite. Force constants for both systems were gener-
ated using the above procedure. We developed a MD
program (LMD) using Eq. 1 as the potential . Multi-
ple popular methods were implemented for calculating
thermal conductivity, including Green Kubo [36, 37], re-
verse non-equilibrium MD (RNEMD)[38] and homoge-
nous non-equlibrium MD (HNEMD)[39].

After extensive testing of these methods we found
HNEMD to be the most reliable. This method works
by subjecting the system to an external field, Fe, which
is used to modify the equations of motion such that the
force on atom a is given by

Fa = Fa −
∑
b

Fab (rab · Fe) +
1

N

∑
b,c

Fbc (rbc · Fe) (5)

where Fa is the unmodified force calculated from Eq. 2.
The external field has the effect of driving higher energy
(hotter) particles with the field and lower energy (colder)
particles against the field, while a thermostat is used to
remove the heat generated from the work done by the
external field. This results in an non-zero average heat
flux, in the absence of a temperature gradient, which is
given by

〈J(t)〉 = −βV
t∫

0

ds 〈J(t− s)J(0)〉 · Fe (6)
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When the external field is zero, the above equation gives
the equilibrium value of the average heat flux. Setting
the external field to Fe = (0, 0, Fz) and in the limit that
t→∞ we get the following relation

k =
V

kBT 2

∞∫
0

dt 〈Jz(t)Jz(0)〉 = lim
Fz→0

−〈Jz(∞)〉
TFz

(7)

The process then involves a series of simulations at vary-
ing external fields Fe and constant T, with a simple linear
extrapolation to zero field resulting in the true thermal
conductivity.

Simulations were carried out for NaCl over a range of
temperatures from 100K to 300K, with system sizes rang-
ing from 512 to 4096 atoms. The lengths of the simula-
tions ranged from 100 picoseconds to 1 nanosecond and
all used a timestep of 1 fs. At each temperature a mini-
mum of four different values for external field were used.
The results obtained via this method are shown for NaCl
in Fig. 3 (a). Extremely good agreement is seen between
values determined from LMD and those obtained experi-
mentally across the entire temperature range tested. Ad-
ditionally, Fig. 3 (b) shows that there is no discernible
size-dependence in the range of supercells tested.

Similar thermal conductivity simulations were done for
tetrahedrite. Note that to simulate the relatively soft co-
valent bonds in tetrahedrite, we had to add a smoothed
constraining wall on the bonds to prevent complete bond
dissociation. Unlike NaCl, however, relatively little data
is available on the thermal conductivity of tetrahedrite.
Recent work by Lu, et. al. suggests a low-temperature
lattice thermal conductivity of less than 1W/mK [40].
LMD simulations result in a thermal conductivity of
0.38± 0.04W/mK for tetrahedrite at 100K.
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FIG. 1. Comparison of CSLD predicted and DFT force com-
ponents when all atoms are randomly displaced by 0.3 Å.
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FIG. 2. Anharmonicity of tetrahedrite. (a) Phonon dispersion
from CSLD. (b) Energy per Cu12Sb4S13 relative to equilib-
rium from DFT (dots) and CSLD (line) of an unstable optical
mode dominated by out-of-plane Cu displacement.

In conclusion, we proposed a general approach to lat-
tice dynamics. The main methodological advance pro-
posed here is the use of compressive sensing to automat-
ically construct high-order anharmonic lattice Hamilto-
nians from DFT calculations. CSLD is more general and
straight-forward than the existing methods for treating
anharmonicity. For instance, CSLD can easily include 4–
6 th-order anharmonicity (important for many cubic sys-
tems with double-well type potentials), which is inacces-
sible to DFPT . CSLD does not require special electronic
structure codes, but can be used directly with highly ac-
curate, established DFT codes , and can be implemented
in an automated manner. The model accuracy may be
improved systematically through the robust framework of
compressive sensing. This technical development is a big
step towards automated calculations of lattice dynamics
for a wide variety of materials, enabling systematic stud-
ies of thermal properties for hundreds, maybe thousands
of compounds.
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